Thursday, July 17, 2008

Frequency domain(time-harmonic) maxwell equations

Frequency domain maxwell equation (vs. regular time-domain maxwell equations)
That's most frequently used maxwell equations. Every time domain function a(t) can be obtained using inverse fourier transform, A(w)

\begin{align*}
\pmb{e} & (\pmb{r},t)=\frac{1}{2\pi }\int \pmb{E}(\pmb{r},\omega)e^{j \omega t}d\omega,
\pmb{h} (\pmb{r},t)=\frac{1}{2\pi }\int \pmb{H}(\pmb{r},\omega)e^{j \omega t}d\omega \\
F & or ~time ~ harmonic ~ components,\\
\mathcal{E} &(r,t)=\pmb{E}(r,\omega)e^{j\omega t},
\mathcal{H}(r,t)=\pmb{H}(r,\omega)e^{j\omega t}\\
\end{align*}

Substitute time harmonic E/H into maxwell equations, with d/dt=jw, we have frequency domain maxwell equations

\begin{align*}
\nabla & \times \pmb{E}= - j\omega \pmb{B} \\
\nabla & \times \pmb{H}= \pmb{J}+ j\omega \pmb{D}\\
\nabla & \cdot \pmb{D}= \rho\\
\nabla & \cdot \pmb{B}= 0
\end{align*}

Note: for the above equations, E=E(r,w). Often, we drop w for simplicity.
Once we know the solution of time harmonic E(r,w) and H(r,w) , we can obtain E(r,t) and H(r,t) in time domain by doing inverse fourier transform.

Signal phasor representation and time average
In real word, the signal are real. For a real value sinusodal signal,

\begin{align*}
\mathcal{A} & (t)=|A|cos(\omega t+\phi) ~ \Longleftrightarrow A(t)=Ae^{j\omega t}\\
o & r ~ \mathcal{A}(t)=Re \{A(t)\}\\
w&here ~ A=|A|e^{j\phi}~ is~ a ~complex ~phasor.
\end{align*}

Time average of two harmonic signals,

\begin{align*}
\mathcal{A} &(t)=Re [A(t)] = Re [Ae^{j\omega t} ]\\
\mathcal{B} &(t)=Re [B(t)] = Re [Be^{j\omega t} ]\\
<\mathcal{A} &(t) \mathcal{B}(t)>=<\frac{1}{2}(Ae^{j\omega t}+A^*e^{-j\omega t})*\frac{1}{2}(Be^{j\omega t}+B^*e^{-j\omega t})\\
= & \frac{1}{4}<(AB^*+BA^*)+ABe^{-j2\omega t}+A^*B^*e^{-j2\omega t}> \\
= & \frac{1}{2} ( < Re[AB^*] > + < Re[AB*e^{-j2\omega t} ] > ) \\
= & \frac{1}{2} Re[AB^*]
\end{align*}

energy conservation and charge conservation

1. Charge conservation
Do the divergence of ampere law(2nd maxwell equation). Since curl has no divergence(another one-gradient has no curl), we have

\begin{align*}
0 &=\nabla \cdot (\nabla \times \pmb{H})=\nabla \cdot (J+\frac{\partial \pmb{D}}{\partial t}) ~\Rightarrow \\
\nabla & \cdot J +\frac{\partial \rho}{\partial t}=0 \\
o &r, in~ integral~ form \\
I &=\int_V\nabla \cdot Jdv=\oint_SJda=\frac{\partial} {\partial t}\int_V \rho dv=\frac{\partial Q} {\partial t}
\end{align*}

Current flow out of the volume V equals to the charge depletion per unit time.
For conductors, J=sigmaE,

\begin{align*}
\nabla & \cdot J= \nabla \cdot \sigma E=\frac{\sigma \rho }{\epsilon} ~ \Rightarrow \\
\nabla & \cdot J+\frac{\partial \rho}{\partial t}=\frac{\sigma \rho }{\epsilon}+\frac{\partial \rho}{\partial t}=0 ~ \Rightarrow \\
\rho &(r,t) = \rho_0 e^{-\sigma t / \epsilon } \\
d &ue ~ to ~ \sigma >> \epsilon ~ in ~ conductor, \rho -> 0 ~ in~ a ~short~ time.
\end{align*}

e.g. Copper, sigma=5.7x10^7, epsilon=8.85x10^-12, epsilon/sigma=1.6x10^-19 sec.


2. Energy conservation.
* Energy per unit volume, \inline w=\frac{1}{2}\epsilon |E|^2+\frac{1}{2}\mu |H|^2
* Energy flux (Poynting vector): \inline \pmb{P}=\pmb{E} \times \pmb{H}

\begin{align*}
\nabla &\cdot (\pmb{E} \times \pmb{H})=\pmb{H}\cdot (\nabla \times \pmb{E})-\pmb{E}\cdot (\nabla \times \pmb{H})= \\
-\mu & \pmb{H}\cdot \frac{\partial \pmb{H}}{\partial t} -\mu \pmb{E}\cdot \frac{\partial \pmb{E}}{\partial t}-\pmb{E}\cdot \pmb{J} ~\Rightarrow\\
\nabla &\cdot \pmb{P}= -\frac{\partial w}{\partial t}- \pmb{E}\cdot \pmb{J}\\
N&ote: \epsilon \pmb{E} \cdot \frac{\partial \pmb{E} }{\partial t}=\frac{1}{2}\epsilon \frac{\partial |E|^2}{\partial t}, \mu \pmb{H} \cdot \frac{\partial \pmb{H} }{\partial t}=\frac{1}{2}\mu \frac{\partial |H|^2}{\partial t}
\end{align*}

the rate of energy flow out of volume equals to the depletion rate of stored energy in the volume and ohmic loss in the volume.

Wednesday, July 16, 2008

curvilinear coordinates

A point can be represented as (x,y,z).Consider 3 independent,smooth and unique invertible(and hopefully orthogonal) functions: u1=f1(x,y,z), u2=f2(x,y,z),u3=f3(x,y,z).The intersection of constant u1,u2,u3 defines a point in a space. The coordinate (u1,u2,u3) is called curvilinear coordinates.Base on inversion, we have x=f1'(u1,u2,u3),y=f2'(u1,u2,u3),z=f3'(u1,u2,u3)

\begin{align*}
\pmb{r} & (u_1,u_2,u_3) =x(u_1,u_2,u_3)\hat{x}+y(u_1,u_2,u_3)\hat{y}+z(u_1,u_2,u_3)\hat{z}\\
d &\pmb{r}=\frac{\partial \pmb{r}}{\partial u_1}du_1+\frac{\partial \pmb{r}}{\partial u_2}du_2+\frac{\partial \pmb{r}}{\partial u_3}du_3\\
=& \pmb{a}_1'du_1+\pmb{a}_2'du_2+\pmb{a}_3'du_3\\
i&f ~ \pmb{a}_1' \perp \pmb{a}_2' \perp \pmb{a}_3', this ~ is ~ orthogonal ~ curvilinear ~ coordinates ~ system\\
d \pmb{r} & = h_1\pmb{a}_1du_1+h_2\pmb{a}_2du_2+h_3\pmb{a}_3du_3\\
w&here ~ \pmb{a}_1,\pmb{a}_2,\pmb{a}_3 ~ are ~ unit ~ vectors
\end{align*}

Similarly,for small surface and volume

\begin{align*}
d\pmb{S}_i & = d\pmb{s}_j \times d\pmb{s}_k \\
wh&ere ~ d\pmb{s}_j=h_jdu_j\pmb{a}_j,d\pmb{s}_k=h_kdu_k\pmb{a}_k,\pmb{a}_j \times \pmb{a}_k=\pmb{a}_i\\
dV = & d\pmb{s}_i \cdot d\pmb{S}_i =(h_idu_i\pmb{a}_i)\cdot (h_jh_kdu_jdu_k\pmb{a}_i)\\
= &(h_1h_2h_3)du_1du_2du_3
\end{align*}

For Cartesian coordinate,

\begin{align*}
u_1 & =x,u_2=y,u_3=z \\
\pmb{a}_1 & =\hat{x},\pmb{a}_2=\hat{y},\pmb{a}_z=\hat{z}\\
d\pmb{r} & =d\pmb{s}=\hat{x}dx+\hat{y}dy+\hat{z}dz \\
h_1 & =h_2=h_3=1\\
d\pmb{S} & =\hat{x}dS_x+\hat{y}dS_y+\hat{z}dS_z=dydz\hat{x}+dxdz\hat{y}+dxdy\hat{z} \\
dV & =dxdydz
\end{align*}

For cylindrical coordinates,

\begin{align*}
u_1 & =\rho, u_2=\psi, u_3=z \\
\pmb{a}_1 & =\hat{u}_{\rho},\pmb{a}_2=\hat{u}_{\psi},\pmb{a}_3=\hat{u}_{z}\\
d\pmb{r} & =\hat{u}_{\rho}d\rho+\hat{u}_{\psi}\rho d\psi+\hat{u}_{\z}dz\\
h_1 &=1, h_2=\rho, h_3=1 \\
d\pmb{S} & =\rho d\psi dz\hat{u}_{\rho} +d\rho dz \hat{u}_{\psi}+\rho d\rho d\psi \hat{u}_{z}\\
dV & =\rho d\rho d\psi dz
\end{align*}

For spherical coordinates,

\begin{align*}
u_1 & =\rho, u_2=\psi, u_3=\theta \\
\pmb{a}_1 & =\hat{u}_{\rho},\pmb{a}_2=\hat{u}_{\psi},\pmb{a}_3=\hat{u}_{\theta}\\
d\pmb{r} & =\hat{u}_{\rho}d\rho+\hat{u}_{\psi}\rho sin\theta d\psi+\hat{u}_{\theta}\rho d\theta \\
h_1 & =1, h_2=\rho, h_3=\rho sin \theta \\
d\pmb{S} &=dS_r\hat{u}_r+dS_{psi}\hat{u}_\psi+dS_{\theta}\hat{u}_{\theta} \\
d\pmb{S} &=\rho^2sin\theta d\psi d \theta\hat{u}_r+\rho sin\theta d\rho d\theta \hat{u}_\psi+\rho d\rho d\psi \hat{u}_{\theta}\\
dV &=\rho^2sin\theta d\rho d\psi d\theta
\end{align*}

For gradient,

\begin{align*}
d\phi & (u_1,u_2,u_3)=\nabla \phi (u_1,u_2,u_3) \cdot d\pmb{s} \\
d\phi & =\frac{\partial \phi}{\partial u_1}du_1+\frac{\partial \phi}{\partial u_2}du_2+\frac{\partial \phi}{\partial u_3}du_3\\
d\pmb{s} & =h_1du_1\pmb{a}_1+h_2du_2\pmb{a}_2+h_3du_3\pmb{a}_3 ~~\Rightarrow \\
\nabla & \phi (u_1,u_2,u_3)=\frac{\partial \phi}{h_1\partial u_1}\pmb{a}_1+\frac{\partial \phi}{h_2\partial u_2}\pmb{a}_2+\frac{\partial \phi}{h_3\partial u_3}\pmb{a}_3
\end{align*}

For divergence,

\begin{align*}
\nabla \cdot \pmb{A}=\frac{1}{h_1h_2h_3}[\frac{\partial(A_1h_2h_3)}{\partial u_1}+\frac{\partial(A_2h_1h_3)}{\partial u_2}+\frac{\partial(A_3h_1h_2)}{\partial u_3}]
\end{align*}

For curl,

\begin{align*}
\nabla \times \pmb{A}=\frac{1}{h_1h_2h_3}
\begin{vmatrix}
h_1\pmb{a}_1 & h_2\pmb{a}_2 & h_3\pmb{a}_3 \\
\frac{\partial}{\partial u_1} & \frac{\partial }{\partial u_2} & \frac{\partial}{\partial u_3} \\
h_1A_1 & h_2A_2 & h_3A_3
\end{vmatrix}
\end{align*}


For laplacian,

\begin{align*}
\nabla ^2 \phi & =\nabla \cdot (\nabla \phi)
=\frac{1}{h_1h_2h_3}[\frac{\partial(A_1h_2h_3)}{\partial u_1}+\frac{\partial(A_2h_1h_3)}{\partial u_2}+\frac{\partial(A_3h_1h_2)}{\partial u_3}] \\
wh & ere ~ A_1=\frac{\partial \phi}{h_1\partial u_1},A_2=\frac{\partial \phi}{h_2\partial u_2},A_3=\frac{\partial \phi}{h_3\partial u_3} \Rightarrow \\
\nabla ^2 \phi & =\frac{1}{h_1h_2h_3}[\frac{\partial}{\partial u_1}(\frac{h_2h_3}{h_1}\frac{\partial \phi}{\partial u_1})+\frac{\partial}{\partial u_2}(\frac{h_1h_3}{h_2}\frac{\partial \phi}{\partial u_2})+\frac{\partial}{\partial u_3}(\frac{h_1h_2}{h_2}\frac{\partial \phi}{\partial u_3})

\end{align*}

Monday, July 14, 2008

Fields in waveguide/transmission line

On a waveguide structure,such as coaxial cable,two wire lines,stripline,micro strip, the wave are propagating in Z direction.The E, H fields are of the form.

\begin{align*}
\pmb{E}&(x,y,z)=\pmb{E}(x,y)e^{-j\beta z} \\
\pmb{H}&(x,y,z)=\pmb{H}(x,y)e^{-j\beta z}
\end{align*}

For source-free regions, maxwell equations become

\begin{align*}
\nabla & \times \pmb{E}= -j\omega \mu \pmb{H}\\
\nabla & \times \pmb{H}= j\omega \epsilon \pmb{E}
\end{align*}

Curl the above equations, using \inline
\nabla \times \nabla \times \pmb{E}= \nabla ( \nabla \cdot \pmb{E})-\nabla^2 \pmb{E}
, we have

\begin{align*}
\nabla ^2& \pmb{E}+k^2 \pmb{E}=0 \\
\nabla ^2& \pmb{H}+k^2 \pmb{H}=0 \\
wh&ere ~ k=\omega \sqrt{\mu \epsilon}
\end{align*}

That's the helmholtz equations. Since both E and H has z-dependence in the form of \inline -j\beta z ~ and ~ \partial_z^2= (-j\beta)^2=-\beta ^2 , the above equations reduce to

\begin{align*}
\nabla_T ^2& \pmb{E}(x,y)+k_c^2 \pmb{E}(x,y)=0 \\
\nabla_T ^2& \pmb{H}(x,y)+k_c^2 \pmb{H}(x,y)=0 \\
wh&ere ~ \nabla_T^2=\nabla_T \cdot \nabla_T=\partial_x^2+\partial_y^2 \\
an&d ~ k_c=k^2-\beta ^2
\end{align*}


The E/H and \inline \nabla can be decomposed into longitudinal(z-direction) and transverse components(normal to z):

\begin{align*}
\pmb{E}&=\pmb{E}_T+\hat{z}E_z\\
\pmb{H}&=\pmb{H}_T+\hat{z}H_z\\
\nabla&= \hat{x}\partial_x+\hat{y}\partial_y+\hat{z}\partial_z=\nabla_T+\hat{z}\partial_z=\nabla_T-j\beta \hat{z}
\end{align*}

Separate Maxwell equation into transverse and longitudinal parts with the following identities

\begin{align*}
\hat{z} \times & \hat{z} =0 \\
\nabla_T & \times (\hat{z}E_z)=\nabla_T E_z \times \hat{z} \\
\nabla_T & \times (\hat{z}H_z)=\nabla_T H_z \times \hat{z} \\
\nabla_T & \times E_T ~ -> ~on ~ z-direction(\hat{x} \times \hat{y} =\hat{z}) \\
z \times & E_T ~ -> ~ on ~ T-plane (transverse plane) \\
\nabla_T & E_z \times \hat{z} ~ -> ~ on ~ T-plane \\
\end{align*}

Substitute \inline \nabla = \nabla_T -j\beta\hat{z} and E=ET+zEz and H=HT+zHz into 1st maxwell equations,we have

\begin{align*}
\nabla_T & \times \pmb{E}_T = -j\omega \mu H_z \hat{z} ~~(1)\\
-j\beta & \hat{z} \times \pmb{E}_T +\nabla_T E_z \times \hat{z}= -j\omega \mu \pmb{H}_T ~~(2)
\end{align*}

Base on duality theorem, we have

\begin{align*}
\nabla_T & \times \pmb{H}_T = j\omega \epsilon E_z \hat{z} ~~(3) \\
-j\beta & \hat{z} \times \pmb{H}_T +\nabla_T H_z \times \hat{z}= j\omega \epsilon \pmb{E}_T ~~(4)
\end{align*}

Substitute z x(4) into (2), with identity
 
\hat{z} & \times \hat{z} \times A_T = -A_T \\
wh&ere ~ A_T \perp \hat{z}

We have

\begin{align*}
\pmb{H}_T&=-\frac{j\omega \epsilon}{k_c^2}\hat{z}\times \nabla_TE_z-\frac{j\beta}{k_c^2}\nabla_TH_z=-\frac{j\beta}{k_c^2}(\nabla_TH_z+\frac{1}{\eta_{TM}}\hat{z}\times \nabla_TE_z)...(5)\\
Ba&se ~ on ~ duality ~ theorem(E->H, H-> -E, \epsilon <-> \mu \eta <-> \frac{1}{\eta}) \\
\pmb{E}_T&=\frac{j\omega \mu}{k_c^2}\hat{z}\times \nabla_TH_z-\frac{j\beta}{k_c^2}\nabla_TE_z=-\frac{j\beta}{k_c^2}(\nabla_TE_z-\eta_{TE}\hat{z}\times \nabla_TH_z)...(6)\\
wh&ere ~~ k_c^2=k^2-\beta ^2=\omega ^2 \epsilon \mu -\beta ^2\\
\eta_{TM}&=\frac{\beta}{\omega \epsilon} \\
\eta_{TE}&=\frac{\omega \mu}{\beta}
\end{align*}

where k=w/c=w*sqrt(eu)=wavenumber in a propagation medium e,u. With Kc!=0, the transverse fields ET and HT can be solved with knowledge of Ez and Hz. To find a solution for Ez and Hz. usse reduced form of helmholtz equation(see above)

\begin{align*}
\nabla_T^2E_z+k_c^2E_z=0\\
\nabla_T^2H_z+k_c^2H_z=0
\end{align*}

TE mode (E field are purely transverse, no longitudinal component ) -- Ez=0

\begin{align*}
\pmb{E}_T&=\frac{j\beta}{k_c^2}\eta_{TE}\hat{z}\times \nabla_TH_z\\
\pmb{H}_T&=-\frac{j\beta}{k_c^2}\nabla_TH_z
\end{align*}

TM mode -- Hz=0

\begin{align*}
\pmb{E}_T&=-\frac{j\beta}{k_c^2}\nabla_TE_z \\
\pmb{H}_T&=-\frac{j\beta}{k_c^2}\frac{1}{\eta_{TM}}\hat{z}\times \nabla_TE_z
\end{align*}


TEM mode -- Ez=Hz=0.
For TEM mode, Kc=0. The problem is a electrostatic case, with

\begin{align*}
\nabla_T^2E_T=0\\
\nabla_T^2H_T=0
\end{align*}

Substitute Hz=0 into equ (1), we have
 
\begin{align*}
\nabla_T & \times \pmb{E}_T = 0 ~~ \Rightarrow ~~ E_T(x,y)= -\nabla_T \phi(x,y)\\
\nabla \cdot & \pmb{D}=0 ~~~ \Rightarrow ~~ \nabla_T \cdot E_T(x,y)= -\nabla_T ^2 \phi(x,y)=0 \\
\end{align*}

That's electrostatic field problem.
Impedance relationship

\begin{align*}
\eta &=\sqrt{\mu /\epsilon}\\
\beta &= \sqrt{k^2-k_c^2}=k\sqrt{1-k_c^2/k^2}=\frac{\omega}{c}\sqrt{1-\omega_c^2/\omega^2}\\
\eta &_{TE}=\frac{\omega \mu}{\beta}=\frac{\eta}{\sqrt{1-\omega_c^2/\omega^2}}\\
\eta &_{TM}=\frac{\beta}{\omega \epsilon }=\eta \sqrt{1-\omega_c^2/\omega^2}
\end{align*}


In cylindrical coordinate, \pmb{E}_T=\hat{\rho}E_{\rho}+\hat{\phi}E_{phi},

\begin{align*}
\nabla_T=\hat{\rho}\frac{\partial}{\partial \rho}+\hat{\phi}\frac{\partial}{\rho \partial \phi}
\end{align*}

Wednesday, July 9, 2008

Displacement current

1. Maxwell equations:

\begin{align}
\nabla \times \pmb{H}&=\pmb{J}+\frac{\partial \pmb{D}}{\partial t} \\
\nabla \times \pmb{E}&=\frac{\partial \pmb{B}}{\partial t}
\end{align*}

Taking the divergence of the above two equations, the left-hand sides are 0(due to curl has no divergency)

\begin{align*}
0 = &\nabla \cdot \pmb{J}+\frac{\partial \pmb{\nabla \cdot D}}{\partial t}
= \nabla \cdot \pmb{J}+\frac{\partial \pmb{\rho}}{\partial t} \\
\nabla \cdot & \pmb{J} = -\frac{\partial \pmb{\rho}}{\partial t}.......(3) \\
0= & \frac{\partial ( \nabla \cdot \pmb{B})}{\partial t}\\
\nabla \cdot & \pmb{B}=0 .........(4)
\end{align*}



Equ (1) shows two types of current:
1. conductor current--Jc
2. displacement current--Jd=dD/dt
In a conductor, Jc>>Jd. In a dielectric(insulator), Jd >>Jc.

ex. Assume a parallel plate capacitor connected to a source with conducting wires. The displacement current within capacitor

\pmb{J}_d=\frac{\partial \pmb{D}}{\partial t}=\varepsilon \frac{\partial \pmb{E}}{\partial t}\\
=-\varepsilon \frac{\partial \nabla V}{\partial t}=\varepsilon \frac{\partial V}{d\partialt}\\
=\frac{\varepsilon }{d}\frac{dV}{dt}


Assume source Vs=V0sinwt, we have

\begin{align *}
\pmb{J}_d=\frac{\varepsilon }{d}\frac{dV}{dt}=\frac{\varepsilon }{d}V_0\omega cos(\omega t)\\
I_d=\int_S J_d ds= \frac{\varepsilon S}{d}V_0\omega cos(\omega t)=CV_0\omega cos(\omega t)
\end{align}

This is the same result frrom circuit theory,Ic=Cdv/dt

DDR2 AC and DC operating conditions

1. Recommended DC operating condition(SSTL_18)
1.1 VDD-supply voltage
1.2 VDDQ- IO supply voltage
1.3 VDDL - DLL supply voltage
1.4 Vref(DC)- I/O reference voltage: equal to VDDQ/2 of the transmitting device
1.5 Vtt -- I/O termination voltage
-----------------------------------------------
* VDD/VDDQ/VDDL: 1.7V(min)---1.8V(nom)---1.9V(max)
* Vref(DC): 0.49VDDQ ---0.5VDDQ ---0.51VDDQ
0.833V ---0.9V ---0.969V
* Vtt: Vref(DC)-40 Vref(DC) Vref(DC)+40 mV
0.793V --- 0.9V --- 1.009V
2. DC Logic Level: Vref(DC)+/-125mV
high: VIH(DC): Vref(DC)+125mV ---- VDDQ (or VDDQ+300mV,not to exceed 1.9V)
low : VIL(DC) -300mV --- Vref(DC)-125mV
3. AC logic Level:
high: Vref(DC)+200mV/250mV --VDDQ
low: -300mV --- Vref(DC)-200mV/250mV note: 250mV for DDR2-400/533(-5E/-37E devices)