Wednesday, November 12, 2008

Transmission line equations

1. General telegraph equation
From telegraph equation

\begin{align*}
- & \frac{\partial \bf{v}(z,\omega) }{\partial z}=[\bf{R}(\omega )+j\omega \bf{L}(\omega)]\bf{i}(z,\omega )=\bf{Z}(\omega) \bf{i}(z,\omega) \\
- & \frac{\partial \bf{i}(z,\omega) }{\partial z}=[\bf{G}(\omega )+j\omega \bf{C}(\omega)]\bf{v}(z,\omega )= \bf{Y}(\omega ) \bf{v} (z, \omega )\\
\end{align*}

we have the following wave equation

\begin{align*}
- \frac{\partial ^2 \bf{v}(z)}{\partial z} = [Z][Y]\bf{v}(z) \\
- \frac{\partial ^2 \bf{i}(z)}{\partial z} = [Y][Z]\bf{i}(z)
\end{align*}

The modal solution to the wave equation will be of the form

\begin{align*}
\bf{v}(z) & = \bf{V}^{\pm}e ^{\mp \gamma _0 z} \\
\bf{i}(z) & = \bf{I}^{\pm}e ^{\mp \gamma _1 z }\\
\end{align*}

Substitute above equation into wave equation, we have

\begin{align*}
( \gamma _0 ^2 \bf{U} & -[Z][Y]) \bf{V} ^{\pm} =0 \\
( \gamma _1 ^2 \bf{U} & -[Y][Z]) \bf{I} ^{\pm} =0 ....(4)\\
\end{align*}

For non-trivial solution, the determinant of

\begin{align*}
| \gamma _0 ^2 \bf{U} & -[Z][Y] | =0 \\
( \gamma _1 ^2 \bf{U} & -[Y][Z]| =0 ....(5)\\
\end{align*}

It can be shown r0=r1=r, due to symmetric of [Z],[Y] and ([Z][Y])T=[YT][ZT]=[Y][Z].
The solution to (4) will be called modes, while the eigenvalues will be called spectrum.
Assume(5) (4) has n distinct eigenvalues and eigenvectors, combine all eigenvectors to form matrix, it will be

\begin{align*}
[\bf{V}_1 e ^ {- \gamma _1 z}, \bf{V}_2 e ^ {- \gamma _1 z},...\bf{V}_N e ^ {- \gamma _N z} ] = \bf{M} _V diag(e ^ {- \gamma _1 z},e ^ {- \gamma _2 z},...,e ^ {- \gamma _N z})=\bf{M}_v \bf{D} ....(6)\\
\end{align*}

where Mv=[V1,V2,...VN] are eigenvectors of voltage wave, Mv is non-singular and span a N-dimensional space. Similarity, we have

\begin{align*}
[\bf{I}_1 e ^ {- \gamma _1 z}, \bf{I}_2 e ^ {- \gamma _1 z},...\bf{I}_N e ^ {- \gamma _N z} ] = \bf{M} _I diag(e ^ {- \gamma _1 z},e ^ {- \gamma _2 z},...,e ^ {- \gamma _N z})=\bf{M}_I \bf{D}
\end{align*}

Substitute (6) into (1), we have

\begin{align*}
\bf{M}_V =[Z]\bf{M}_I diag(\gamma_1 ^ {-1},\gamma_2 ^ {-1},...\gamma_N^ {-1})=\bf{Z}\bf{M}_I \bf{S}
\end{align*}

Similarity, we have

\begin{align*}
\bf{M}_I =[Y]\bf{M}_V diag(\gamma_1 ^ {-1},\gamma_2 ^ {-1},...\gamma_N^ {-1})=\bf{Y}\bf{M}_V \bf{S}
\end{align*}

Now, we have the N engenvectors spanning N-dimensional space, any voltage V(z) can be represented as linear combination of these eighenvectors.

\bf{V}(z)=\bf{V}_i(z)+\bf{V}_r(z)=\bf{M_v(DV_0^++D^{-1}V_0^-)}

where

\begin{align*}
\bf{V_0^+}= &(V_{01}^+,V_{02}^+,....,V_{0N}^+)\\
\bf{V_0^-}= & (V_{01}^-,V_{02}^-,....,V_{0N}^-)
\end{align*}

Same thing for I(z),where

\bf{I}(z)=\bf{I}_i(z)+\bf{I}_r(z)=\bf{M_I(DI_0^+-D^{-1}I_0^-)}

Note: minus (-1) sign is due to the directions of current Ir is opposite of Ii.
The characteristic matrix Zc is defined as

\begin{align*}
\bf{V_i}(z) & =\bf{Z}_C \bf{I}_i(z) \\
\bf{V_r}(z) & =-\bf{Z}_C \bf{I}_r(z) \\
w&here\\
\bf{Z}_C & =\bf{M}_V \bf{M}_I ^{-1}
\end{align*}

Thursday, October 30, 2008

S-parameter vs impedance matrix

1.Generalized scattering parameter

\begin{align*}
a_n &=\frac{V_n ^+}{\sqrt {Z_{0n}}}\\
b_n &=\frac{V_n ^-}{\sqrt {Z_{0n}}}\\
w&here~ a_n,b_n ~are~incident~wave~and~reflected~wave,respectively\\
V_n &=V_n^+ + V_n^- =(a_n + b_n) \times \sqrt{Z_{0n}}\\
I_n &=I_n^+ + I_n^- =(V_n^+ -V_n^-)/ Z_{0n}=(a_n-b_n)/\sqrt{Z_{0n}}\\
P_n & =\frac{1}{2}Re[V_nI_n^*]=\frac{1}{2}[a^2-b^2]\\
\bf{b} & =\bf{S}\bf{a}\\
w&here~ S_{ij}=\frac{b_i}{a_j}|a_k=0~ for~ k\ne j
\end{align*}

For Z0n=Z0, ie, all ports have same characteristic impedance, we have

\begin{bmatrix} V_1 ^- \\ V_2 ^-\\.\\.\\.\\V_n ^- \end{bmatrix}=
\begin{bmatrix}S_{11}&S_{12}&... &S_{1n}\\S_{21}&S_{22}&...&S_{2n}\\.\\.\\.\\S_{n1} &S_{n2}&...&S_{nn} \end{bmatrix}
\begin{bmatrix} V_1 ^+ \\ V_2 ^+\\.\\.\\.\\V_n ^+ \end{bmatrix} \\
where \\
S_{ij}=\frac{V_i^-}{V_j^+} |_{V_k^+ =0,~ for~ k \ne j} \\
V_k ^+=0~ --~ port~k~terminated~to~characteristic~impedance\\


For impedance matrix
[V]=[Z][I]
where

\begin{align*}
V_{ij} &=V_{ij}^+ + V_{ij}^- \\
I_{ij} &=I_{ij}^+ - I_{ij}^- \\
\end{align*}

The - sign is due to inverted direction of current \inline I^- . See below for the illustration of V+/V- and I+/I-.
I+
---->--------+-----------+
| | | |
V+ V- | port k |
| | | |
-----<-------+-----------+
I-

Monday, October 27, 2008

inductance calculation

1.two transmission lines ( one transmission line over ground plane)
============ t
h
============
<--- W ---->

Assume W>>h, h>>t, the partial inductance of the two-pair trace is

L_{trace_pair}\approx \frac{\mu_0 \mu_r h len}{W}

where u0= 4*pi nH/meter=32pH/mil (permeability of air), ur=relative permeability of the medium. len=transmission line length.
when len=W, L_trace=32pH*h (independent of the size of the square.)

Thursday, July 17, 2008

Frequency domain(time-harmonic) maxwell equations

Frequency domain maxwell equation (vs. regular time-domain maxwell equations)
That's most frequently used maxwell equations. Every time domain function a(t) can be obtained using inverse fourier transform, A(w)

\begin{align*}
\pmb{e} & (\pmb{r},t)=\frac{1}{2\pi }\int \pmb{E}(\pmb{r},\omega)e^{j \omega t}d\omega,
\pmb{h} (\pmb{r},t)=\frac{1}{2\pi }\int \pmb{H}(\pmb{r},\omega)e^{j \omega t}d\omega \\
F & or ~time ~ harmonic ~ components,\\
\mathcal{E} &(r,t)=\pmb{E}(r,\omega)e^{j\omega t},
\mathcal{H}(r,t)=\pmb{H}(r,\omega)e^{j\omega t}\\
\end{align*}

Substitute time harmonic E/H into maxwell equations, with d/dt=jw, we have frequency domain maxwell equations

\begin{align*}
\nabla & \times \pmb{E}= - j\omega \pmb{B} \\
\nabla & \times \pmb{H}= \pmb{J}+ j\omega \pmb{D}\\
\nabla & \cdot \pmb{D}= \rho\\
\nabla & \cdot \pmb{B}= 0
\end{align*}

Note: for the above equations, E=E(r,w). Often, we drop w for simplicity.
Once we know the solution of time harmonic E(r,w) and H(r,w) , we can obtain E(r,t) and H(r,t) in time domain by doing inverse fourier transform.

Signal phasor representation and time average
In real word, the signal are real. For a real value sinusodal signal,

\begin{align*}
\mathcal{A} & (t)=|A|cos(\omega t+\phi) ~ \Longleftrightarrow A(t)=Ae^{j\omega t}\\
o & r ~ \mathcal{A}(t)=Re \{A(t)\}\\
w&here ~ A=|A|e^{j\phi}~ is~ a ~complex ~phasor.
\end{align*}

Time average of two harmonic signals,

\begin{align*}
\mathcal{A} &(t)=Re [A(t)] = Re [Ae^{j\omega t} ]\\
\mathcal{B} &(t)=Re [B(t)] = Re [Be^{j\omega t} ]\\
<\mathcal{A} &(t) \mathcal{B}(t)>=<\frac{1}{2}(Ae^{j\omega t}+A^*e^{-j\omega t})*\frac{1}{2}(Be^{j\omega t}+B^*e^{-j\omega t})\\
= & \frac{1}{4}<(AB^*+BA^*)+ABe^{-j2\omega t}+A^*B^*e^{-j2\omega t}> \\
= & \frac{1}{2} ( < Re[AB^*] > + < Re[AB*e^{-j2\omega t} ] > ) \\
= & \frac{1}{2} Re[AB^*]
\end{align*}

energy conservation and charge conservation

1. Charge conservation
Do the divergence of ampere law(2nd maxwell equation). Since curl has no divergence(another one-gradient has no curl), we have

\begin{align*}
0 &=\nabla \cdot (\nabla \times \pmb{H})=\nabla \cdot (J+\frac{\partial \pmb{D}}{\partial t}) ~\Rightarrow \\
\nabla & \cdot J +\frac{\partial \rho}{\partial t}=0 \\
o &r, in~ integral~ form \\
I &=\int_V\nabla \cdot Jdv=\oint_SJda=\frac{\partial} {\partial t}\int_V \rho dv=\frac{\partial Q} {\partial t}
\end{align*}

Current flow out of the volume V equals to the charge depletion per unit time.
For conductors, J=sigmaE,

\begin{align*}
\nabla & \cdot J= \nabla \cdot \sigma E=\frac{\sigma \rho }{\epsilon} ~ \Rightarrow \\
\nabla & \cdot J+\frac{\partial \rho}{\partial t}=\frac{\sigma \rho }{\epsilon}+\frac{\partial \rho}{\partial t}=0 ~ \Rightarrow \\
\rho &(r,t) = \rho_0 e^{-\sigma t / \epsilon } \\
d &ue ~ to ~ \sigma >> \epsilon ~ in ~ conductor, \rho -> 0 ~ in~ a ~short~ time.
\end{align*}

e.g. Copper, sigma=5.7x10^7, epsilon=8.85x10^-12, epsilon/sigma=1.6x10^-19 sec.


2. Energy conservation.
* Energy per unit volume, \inline w=\frac{1}{2}\epsilon |E|^2+\frac{1}{2}\mu |H|^2
* Energy flux (Poynting vector): \inline \pmb{P}=\pmb{E} \times \pmb{H}

\begin{align*}
\nabla &\cdot (\pmb{E} \times \pmb{H})=\pmb{H}\cdot (\nabla \times \pmb{E})-\pmb{E}\cdot (\nabla \times \pmb{H})= \\
-\mu & \pmb{H}\cdot \frac{\partial \pmb{H}}{\partial t} -\mu \pmb{E}\cdot \frac{\partial \pmb{E}}{\partial t}-\pmb{E}\cdot \pmb{J} ~\Rightarrow\\
\nabla &\cdot \pmb{P}= -\frac{\partial w}{\partial t}- \pmb{E}\cdot \pmb{J}\\
N&ote: \epsilon \pmb{E} \cdot \frac{\partial \pmb{E} }{\partial t}=\frac{1}{2}\epsilon \frac{\partial |E|^2}{\partial t}, \mu \pmb{H} \cdot \frac{\partial \pmb{H} }{\partial t}=\frac{1}{2}\mu \frac{\partial |H|^2}{\partial t}
\end{align*}

the rate of energy flow out of volume equals to the depletion rate of stored energy in the volume and ohmic loss in the volume.

Wednesday, July 16, 2008

curvilinear coordinates

A point can be represented as (x,y,z).Consider 3 independent,smooth and unique invertible(and hopefully orthogonal) functions: u1=f1(x,y,z), u2=f2(x,y,z),u3=f3(x,y,z).The intersection of constant u1,u2,u3 defines a point in a space. The coordinate (u1,u2,u3) is called curvilinear coordinates.Base on inversion, we have x=f1'(u1,u2,u3),y=f2'(u1,u2,u3),z=f3'(u1,u2,u3)

\begin{align*}
\pmb{r} & (u_1,u_2,u_3) =x(u_1,u_2,u_3)\hat{x}+y(u_1,u_2,u_3)\hat{y}+z(u_1,u_2,u_3)\hat{z}\\
d &\pmb{r}=\frac{\partial \pmb{r}}{\partial u_1}du_1+\frac{\partial \pmb{r}}{\partial u_2}du_2+\frac{\partial \pmb{r}}{\partial u_3}du_3\\
=& \pmb{a}_1'du_1+\pmb{a}_2'du_2+\pmb{a}_3'du_3\\
i&f ~ \pmb{a}_1' \perp \pmb{a}_2' \perp \pmb{a}_3', this ~ is ~ orthogonal ~ curvilinear ~ coordinates ~ system\\
d \pmb{r} & = h_1\pmb{a}_1du_1+h_2\pmb{a}_2du_2+h_3\pmb{a}_3du_3\\
w&here ~ \pmb{a}_1,\pmb{a}_2,\pmb{a}_3 ~ are ~ unit ~ vectors
\end{align*}

Similarly,for small surface and volume

\begin{align*}
d\pmb{S}_i & = d\pmb{s}_j \times d\pmb{s}_k \\
wh&ere ~ d\pmb{s}_j=h_jdu_j\pmb{a}_j,d\pmb{s}_k=h_kdu_k\pmb{a}_k,\pmb{a}_j \times \pmb{a}_k=\pmb{a}_i\\
dV = & d\pmb{s}_i \cdot d\pmb{S}_i =(h_idu_i\pmb{a}_i)\cdot (h_jh_kdu_jdu_k\pmb{a}_i)\\
= &(h_1h_2h_3)du_1du_2du_3
\end{align*}

For Cartesian coordinate,

\begin{align*}
u_1 & =x,u_2=y,u_3=z \\
\pmb{a}_1 & =\hat{x},\pmb{a}_2=\hat{y},\pmb{a}_z=\hat{z}\\
d\pmb{r} & =d\pmb{s}=\hat{x}dx+\hat{y}dy+\hat{z}dz \\
h_1 & =h_2=h_3=1\\
d\pmb{S} & =\hat{x}dS_x+\hat{y}dS_y+\hat{z}dS_z=dydz\hat{x}+dxdz\hat{y}+dxdy\hat{z} \\
dV & =dxdydz
\end{align*}

For cylindrical coordinates,

\begin{align*}
u_1 & =\rho, u_2=\psi, u_3=z \\
\pmb{a}_1 & =\hat{u}_{\rho},\pmb{a}_2=\hat{u}_{\psi},\pmb{a}_3=\hat{u}_{z}\\
d\pmb{r} & =\hat{u}_{\rho}d\rho+\hat{u}_{\psi}\rho d\psi+\hat{u}_{\z}dz\\
h_1 &=1, h_2=\rho, h_3=1 \\
d\pmb{S} & =\rho d\psi dz\hat{u}_{\rho} +d\rho dz \hat{u}_{\psi}+\rho d\rho d\psi \hat{u}_{z}\\
dV & =\rho d\rho d\psi dz
\end{align*}

For spherical coordinates,

\begin{align*}
u_1 & =\rho, u_2=\psi, u_3=\theta \\
\pmb{a}_1 & =\hat{u}_{\rho},\pmb{a}_2=\hat{u}_{\psi},\pmb{a}_3=\hat{u}_{\theta}\\
d\pmb{r} & =\hat{u}_{\rho}d\rho+\hat{u}_{\psi}\rho sin\theta d\psi+\hat{u}_{\theta}\rho d\theta \\
h_1 & =1, h_2=\rho, h_3=\rho sin \theta \\
d\pmb{S} &=dS_r\hat{u}_r+dS_{psi}\hat{u}_\psi+dS_{\theta}\hat{u}_{\theta} \\
d\pmb{S} &=\rho^2sin\theta d\psi d \theta\hat{u}_r+\rho sin\theta d\rho d\theta \hat{u}_\psi+\rho d\rho d\psi \hat{u}_{\theta}\\
dV &=\rho^2sin\theta d\rho d\psi d\theta
\end{align*}

For gradient,

\begin{align*}
d\phi & (u_1,u_2,u_3)=\nabla \phi (u_1,u_2,u_3) \cdot d\pmb{s} \\
d\phi & =\frac{\partial \phi}{\partial u_1}du_1+\frac{\partial \phi}{\partial u_2}du_2+\frac{\partial \phi}{\partial u_3}du_3\\
d\pmb{s} & =h_1du_1\pmb{a}_1+h_2du_2\pmb{a}_2+h_3du_3\pmb{a}_3 ~~\Rightarrow \\
\nabla & \phi (u_1,u_2,u_3)=\frac{\partial \phi}{h_1\partial u_1}\pmb{a}_1+\frac{\partial \phi}{h_2\partial u_2}\pmb{a}_2+\frac{\partial \phi}{h_3\partial u_3}\pmb{a}_3
\end{align*}

For divergence,

\begin{align*}
\nabla \cdot \pmb{A}=\frac{1}{h_1h_2h_3}[\frac{\partial(A_1h_2h_3)}{\partial u_1}+\frac{\partial(A_2h_1h_3)}{\partial u_2}+\frac{\partial(A_3h_1h_2)}{\partial u_3}]
\end{align*}

For curl,

\begin{align*}
\nabla \times \pmb{A}=\frac{1}{h_1h_2h_3}
\begin{vmatrix}
h_1\pmb{a}_1 & h_2\pmb{a}_2 & h_3\pmb{a}_3 \\
\frac{\partial}{\partial u_1} & \frac{\partial }{\partial u_2} & \frac{\partial}{\partial u_3} \\
h_1A_1 & h_2A_2 & h_3A_3
\end{vmatrix}
\end{align*}


For laplacian,

\begin{align*}
\nabla ^2 \phi & =\nabla \cdot (\nabla \phi)
=\frac{1}{h_1h_2h_3}[\frac{\partial(A_1h_2h_3)}{\partial u_1}+\frac{\partial(A_2h_1h_3)}{\partial u_2}+\frac{\partial(A_3h_1h_2)}{\partial u_3}] \\
wh & ere ~ A_1=\frac{\partial \phi}{h_1\partial u_1},A_2=\frac{\partial \phi}{h_2\partial u_2},A_3=\frac{\partial \phi}{h_3\partial u_3} \Rightarrow \\
\nabla ^2 \phi & =\frac{1}{h_1h_2h_3}[\frac{\partial}{\partial u_1}(\frac{h_2h_3}{h_1}\frac{\partial \phi}{\partial u_1})+\frac{\partial}{\partial u_2}(\frac{h_1h_3}{h_2}\frac{\partial \phi}{\partial u_2})+\frac{\partial}{\partial u_3}(\frac{h_1h_2}{h_2}\frac{\partial \phi}{\partial u_3})

\end{align*}

Monday, July 14, 2008

Fields in waveguide/transmission line

On a waveguide structure,such as coaxial cable,two wire lines,stripline,micro strip, the wave are propagating in Z direction.The E, H fields are of the form.

\begin{align*}
\pmb{E}&(x,y,z)=\pmb{E}(x,y)e^{-j\beta z} \\
\pmb{H}&(x,y,z)=\pmb{H}(x,y)e^{-j\beta z}
\end{align*}

For source-free regions, maxwell equations become

\begin{align*}
\nabla & \times \pmb{E}= -j\omega \mu \pmb{H}\\
\nabla & \times \pmb{H}= j\omega \epsilon \pmb{E}
\end{align*}

Curl the above equations, using \inline
\nabla \times \nabla \times \pmb{E}= \nabla ( \nabla \cdot \pmb{E})-\nabla^2 \pmb{E}
, we have

\begin{align*}
\nabla ^2& \pmb{E}+k^2 \pmb{E}=0 \\
\nabla ^2& \pmb{H}+k^2 \pmb{H}=0 \\
wh&ere ~ k=\omega \sqrt{\mu \epsilon}
\end{align*}

That's the helmholtz equations. Since both E and H has z-dependence in the form of \inline -j\beta z ~ and ~ \partial_z^2= (-j\beta)^2=-\beta ^2 , the above equations reduce to

\begin{align*}
\nabla_T ^2& \pmb{E}(x,y)+k_c^2 \pmb{E}(x,y)=0 \\
\nabla_T ^2& \pmb{H}(x,y)+k_c^2 \pmb{H}(x,y)=0 \\
wh&ere ~ \nabla_T^2=\nabla_T \cdot \nabla_T=\partial_x^2+\partial_y^2 \\
an&d ~ k_c=k^2-\beta ^2
\end{align*}


The E/H and \inline \nabla can be decomposed into longitudinal(z-direction) and transverse components(normal to z):

\begin{align*}
\pmb{E}&=\pmb{E}_T+\hat{z}E_z\\
\pmb{H}&=\pmb{H}_T+\hat{z}H_z\\
\nabla&= \hat{x}\partial_x+\hat{y}\partial_y+\hat{z}\partial_z=\nabla_T+\hat{z}\partial_z=\nabla_T-j\beta \hat{z}
\end{align*}

Separate Maxwell equation into transverse and longitudinal parts with the following identities

\begin{align*}
\hat{z} \times & \hat{z} =0 \\
\nabla_T & \times (\hat{z}E_z)=\nabla_T E_z \times \hat{z} \\
\nabla_T & \times (\hat{z}H_z)=\nabla_T H_z \times \hat{z} \\
\nabla_T & \times E_T ~ -> ~on ~ z-direction(\hat{x} \times \hat{y} =\hat{z}) \\
z \times & E_T ~ -> ~ on ~ T-plane (transverse plane) \\
\nabla_T & E_z \times \hat{z} ~ -> ~ on ~ T-plane \\
\end{align*}

Substitute \inline \nabla = \nabla_T -j\beta\hat{z} and E=ET+zEz and H=HT+zHz into 1st maxwell equations,we have

\begin{align*}
\nabla_T & \times \pmb{E}_T = -j\omega \mu H_z \hat{z} ~~(1)\\
-j\beta & \hat{z} \times \pmb{E}_T +\nabla_T E_z \times \hat{z}= -j\omega \mu \pmb{H}_T ~~(2)
\end{align*}

Base on duality theorem, we have

\begin{align*}
\nabla_T & \times \pmb{H}_T = j\omega \epsilon E_z \hat{z} ~~(3) \\
-j\beta & \hat{z} \times \pmb{H}_T +\nabla_T H_z \times \hat{z}= j\omega \epsilon \pmb{E}_T ~~(4)
\end{align*}

Substitute z x(4) into (2), with identity
 
\hat{z} & \times \hat{z} \times A_T = -A_T \\
wh&ere ~ A_T \perp \hat{z}

We have

\begin{align*}
\pmb{H}_T&=-\frac{j\omega \epsilon}{k_c^2}\hat{z}\times \nabla_TE_z-\frac{j\beta}{k_c^2}\nabla_TH_z=-\frac{j\beta}{k_c^2}(\nabla_TH_z+\frac{1}{\eta_{TM}}\hat{z}\times \nabla_TE_z)...(5)\\
Ba&se ~ on ~ duality ~ theorem(E->H, H-> -E, \epsilon <-> \mu \eta <-> \frac{1}{\eta}) \\
\pmb{E}_T&=\frac{j\omega \mu}{k_c^2}\hat{z}\times \nabla_TH_z-\frac{j\beta}{k_c^2}\nabla_TE_z=-\frac{j\beta}{k_c^2}(\nabla_TE_z-\eta_{TE}\hat{z}\times \nabla_TH_z)...(6)\\
wh&ere ~~ k_c^2=k^2-\beta ^2=\omega ^2 \epsilon \mu -\beta ^2\\
\eta_{TM}&=\frac{\beta}{\omega \epsilon} \\
\eta_{TE}&=\frac{\omega \mu}{\beta}
\end{align*}

where k=w/c=w*sqrt(eu)=wavenumber in a propagation medium e,u. With Kc!=0, the transverse fields ET and HT can be solved with knowledge of Ez and Hz. To find a solution for Ez and Hz. usse reduced form of helmholtz equation(see above)

\begin{align*}
\nabla_T^2E_z+k_c^2E_z=0\\
\nabla_T^2H_z+k_c^2H_z=0
\end{align*}

TE mode (E field are purely transverse, no longitudinal component ) -- Ez=0

\begin{align*}
\pmb{E}_T&=\frac{j\beta}{k_c^2}\eta_{TE}\hat{z}\times \nabla_TH_z\\
\pmb{H}_T&=-\frac{j\beta}{k_c^2}\nabla_TH_z
\end{align*}

TM mode -- Hz=0

\begin{align*}
\pmb{E}_T&=-\frac{j\beta}{k_c^2}\nabla_TE_z \\
\pmb{H}_T&=-\frac{j\beta}{k_c^2}\frac{1}{\eta_{TM}}\hat{z}\times \nabla_TE_z
\end{align*}


TEM mode -- Ez=Hz=0.
For TEM mode, Kc=0. The problem is a electrostatic case, with

\begin{align*}
\nabla_T^2E_T=0\\
\nabla_T^2H_T=0
\end{align*}

Substitute Hz=0 into equ (1), we have
 
\begin{align*}
\nabla_T & \times \pmb{E}_T = 0 ~~ \Rightarrow ~~ E_T(x,y)= -\nabla_T \phi(x,y)\\
\nabla \cdot & \pmb{D}=0 ~~~ \Rightarrow ~~ \nabla_T \cdot E_T(x,y)= -\nabla_T ^2 \phi(x,y)=0 \\
\end{align*}

That's electrostatic field problem.
Impedance relationship

\begin{align*}
\eta &=\sqrt{\mu /\epsilon}\\
\beta &= \sqrt{k^2-k_c^2}=k\sqrt{1-k_c^2/k^2}=\frac{\omega}{c}\sqrt{1-\omega_c^2/\omega^2}\\
\eta &_{TE}=\frac{\omega \mu}{\beta}=\frac{\eta}{\sqrt{1-\omega_c^2/\omega^2}}\\
\eta &_{TM}=\frac{\beta}{\omega \epsilon }=\eta \sqrt{1-\omega_c^2/\omega^2}
\end{align*}


In cylindrical coordinate, \pmb{E}_T=\hat{\rho}E_{\rho}+\hat{\phi}E_{phi},

\begin{align*}
\nabla_T=\hat{\rho}\frac{\partial}{\partial \rho}+\hat{\phi}\frac{\partial}{\rho \partial \phi}
\end{align*}

Wednesday, July 9, 2008

Displacement current

1. Maxwell equations:

\begin{align}
\nabla \times \pmb{H}&=\pmb{J}+\frac{\partial \pmb{D}}{\partial t} \\
\nabla \times \pmb{E}&=\frac{\partial \pmb{B}}{\partial t}
\end{align*}

Taking the divergence of the above two equations, the left-hand sides are 0(due to curl has no divergency)

\begin{align*}
0 = &\nabla \cdot \pmb{J}+\frac{\partial \pmb{\nabla \cdot D}}{\partial t}
= \nabla \cdot \pmb{J}+\frac{\partial \pmb{\rho}}{\partial t} \\
\nabla \cdot & \pmb{J} = -\frac{\partial \pmb{\rho}}{\partial t}.......(3) \\
0= & \frac{\partial ( \nabla \cdot \pmb{B})}{\partial t}\\
\nabla \cdot & \pmb{B}=0 .........(4)
\end{align*}



Equ (1) shows two types of current:
1. conductor current--Jc
2. displacement current--Jd=dD/dt
In a conductor, Jc>>Jd. In a dielectric(insulator), Jd >>Jc.

ex. Assume a parallel plate capacitor connected to a source with conducting wires. The displacement current within capacitor

\pmb{J}_d=\frac{\partial \pmb{D}}{\partial t}=\varepsilon \frac{\partial \pmb{E}}{\partial t}\\
=-\varepsilon \frac{\partial \nabla V}{\partial t}=\varepsilon \frac{\partial V}{d\partialt}\\
=\frac{\varepsilon }{d}\frac{dV}{dt}


Assume source Vs=V0sinwt, we have

\begin{align *}
\pmb{J}_d=\frac{\varepsilon }{d}\frac{dV}{dt}=\frac{\varepsilon }{d}V_0\omega cos(\omega t)\\
I_d=\int_S J_d ds= \frac{\varepsilon S}{d}V_0\omega cos(\omega t)=CV_0\omega cos(\omega t)
\end{align}

This is the same result frrom circuit theory,Ic=Cdv/dt

DDR2 AC and DC operating conditions

1. Recommended DC operating condition(SSTL_18)
1.1 VDD-supply voltage
1.2 VDDQ- IO supply voltage
1.3 VDDL - DLL supply voltage
1.4 Vref(DC)- I/O reference voltage: equal to VDDQ/2 of the transmitting device
1.5 Vtt -- I/O termination voltage
-----------------------------------------------
* VDD/VDDQ/VDDL: 1.7V(min)---1.8V(nom)---1.9V(max)
* Vref(DC): 0.49VDDQ ---0.5VDDQ ---0.51VDDQ
0.833V ---0.9V ---0.969V
* Vtt: Vref(DC)-40 Vref(DC) Vref(DC)+40 mV
0.793V --- 0.9V --- 1.009V
2. DC Logic Level: Vref(DC)+/-125mV
high: VIH(DC): Vref(DC)+125mV ---- VDDQ (or VDDQ+300mV,not to exceed 1.9V)
low : VIL(DC) -300mV --- Vref(DC)-125mV
3. AC logic Level:
high: Vref(DC)+200mV/250mV --VDDQ
low: -300mV --- Vref(DC)-200mV/250mV note: 250mV for DDR2-400/533(-5E/-37E devices)

Monday, June 30, 2008

power bus plane impedance


\begin{align}
Z_{ij}(\omega)=\sum_{m=0}^\infty \sum_{n=0}^\infty \frac{N_{mni}N_{mnj}}{\frac{1}{j\omega L_{mn}}+j\omega C_0+G_{mn}} \label{second}
\end{align}

where

\begin{align*}
\omega_{mn}&=\frac{k_{mn}}{\sqrt{\varepsilon\mu}},C_0=\frac{ab\varepsilon}{d},L_{mn}=\frac{1}{C_0\omega_{mn}^2}, \\
G_{mn}&=C_0\omega_{mn}(tan\delta +\frac{r}{d}),
k_{mn}=(\frac{m\pi}{a})^2+(\frac{n\pi}{b})^2 \\
N_{mni}&=c_mc_ncos(\frac{m\pi x_i}{a})cos(\frac{n\pi y_i}{b})sinc(\frac{m\pi W_{xi}}{2a})sinc(\frac{n\pi W_{yi}}{2b})
\end{align*}



\begin{align*}
m=n&=0=>G_{mn}=0,L_{mn}=\infty, N_{00i}=N_{00j}=1 \\
Z_{ij}(\omega )&=\frac{1}{j\omega C_0}+\sum_{m=0,n=0}^\infty \sum_{m,n\neq (0,0)}^\infty \frac{N_{mni}N_{mnj}}{\frac{1}{j\omega L_{mn}}+j\omega C_0+G_{mn}}
\end{align*}

Friday, June 20, 2008

Inductance defintion from EM theory




Inductance Defintion- Inductance is the result of charge movement(current). Inductance is unique defined for a closed loop of circuit. Inductance is part of the lumped-circuit model. It is only valid when the physical dimension of the circuit is electrically small lamda/10, in other words, much less than the wavelength of interest. With introduction of mutual inductance, we can


L=\frac{\Phi}{I}=\frac{\int\int_{S}\mathbf{B}\cdot d\mathbf{s}}{I}
=\frac{\int\int_{S}(\bigtriangledown \times \mathbf{A})\cdot d\mathbf{s}}{I}
=\frac{\oint_{C}\mathbf{A}\cdot d\mathbf{l}}{I}

where A is a static magnetic vector potential, and given by

A=\int_{V}\frac{\mu \mathbf{J}d\mathbf{v}}{4\pi r}

The above definition is a only valid for a loop with in finitesimal small cross section. However, for a conductor with finite cross section. Divide the cross section into small section. Using the average for A,


A=\frac{1}{a}\int_{a}\mathbf{A}da}

where a is the conductor cross section perpendicular to the current flow.
Flux coupling and Mutual inductance
Given two loops with uniform cross section and constant current distribution, i and j, the average flux on loop i due to current on loop j(Ij) is

\Phi_{IJ}=<\Phi_{ij}>=<\oint_{Ci}\mathbf{A}\cdot d\mathbf{l}>
=\oint_{Ci}<\mathbf{A}>\cdot d\mathbf{l}=\oint_{Ci}\frac{1}{a_i}\int_{a_i}\mathbf{A}da_i\cdot d\mathbf{l}
=\frac{1}{a_i}\oint_{C_i}\int_{a_i}\mathbf{A_{ij}}\cdot d\mathbf{l_i}da_i
=\frac{\mu}{4\pi a_i}\oint_{C_i}\int_{a_i}\int_{V_j}\frac{
1}{r_{ij}}\mathbf{J_j}dv\cdot d\mathbf{l_i}da_i

where


\int_{V_j}\mathbf{J_j}dv=\oint_{C_j}\int_{a_j}\frac{\mathbf{I_j}da_jdl_j}{a_j}
=\oint_{C_j}\int_{a_j}\frac{I_jda_jd\mathbf{l_j}}{a_j}

Thus,

<\Phi_{ij}>=\frac{\mu I_j}{4\pi a_ia_j}\oint_{C_i}\oint_{C_j}\int_{a_i}\int_{a_j}\frac{d\mathbf{l_i}\cdot d \mathbf{l_j} }{r_{ij}}da_i da_j

The mutual inductance between loop i and loop j is,

L_{ij}=\frac{<\Phi_{ij}>}{I_j}=\frac{\mu}{4\pi a_ia_j}\oint_{C_i}\oint_{C_j}\int_{a_i}\int_{a_j}\frac{d\mathbf{l_i}\cdot d \mathbf{l_j} }{r_{ij}}da_i da_j


For thin filamentary wire i and j, the above formula reduce to Newman formula


L_f_{ij}=\frac{\mu }{4\pi}\oint_{C_i}\oint_{C_j}\frac{d\mathbf{l_i}\cdot d \mathbf{l_j} }{r_{ij}}

Rewrite Lij in terms of Lfij

L_{ij}=\frac{1}{a_i a_j}\int_{a_i}\int_{a_j}L_f_{ij}da_ida_j



Partial Inductance
Divide the loops Ci and Cj into K and M segments respectivel
y.

L_{ij}\approx \sum_{k=1}^K \sum_{m=1}^M\frac{\mu}{4\pi a_ka_m}\int_{a_k}\int_{a_m}\int_{b_k}^{c_k}\int_{b_m}^{c_m}\frac{d\mathbf{l_k}\cdot d \mathbf{l_m} }{r_{km}}da_k da_m

Here comes the partial inductance between segment m and segment k,

L_{pkm}=\frac{\mu}{4\pi a_k a_m}\int_{a_k}\int_{a_m}\int_{b_k}^{c_k}\int_{b_m}^{c_m}\frac{|d\mathbf{l_k}\cdot d \mathbf{l_m}| }{r_{km}}da_k da_m

if \inline \theta_{km} is the angle between \inline d\mathbf{l}
_{k}} and \inline d\mathbf{l}_{m}} , then

L_{ij}=\sum_{k=1}^K\sum_{m=1}^MS_{km}L_{pkm}

where

S_{km} =
\begin{cases}
1, & \mbox{if } \theta_{km} < \frac{\pi}{2} \\ -1, & \mbox{if } \theta_{km} > \frac{\pi}{2} \\
0, & \mbox{if } \theta_{km} = \frac{\pi}{2}
\end{cases}


For thin wire conductors i and j, partial inductance between segment k and m will be reduced to

L_{pkm}=\frac{\mu}{4\pi}\int_{b_k}^{c_k}\int_{b_m}^{c_m}\frac{|d\mathbf{l_k}\cdot d \mathbf{l_m}| }{r_{km}}

The inductance of the following area(bounded at the ends between bk-ck and infinity, and on the sides by two straight lines which go through points bk and ck and perpendicular to line bm-cm) due to Im, is

L_{bk-ck-inf|m}=\frac{1}{I_m}\int_{a_k'}\mathbf{B}\cdot d\mathbf{a_k'}
=\frac{1}{I_m}\oint_{l_k}\mathbf{A_{km}}\cdot d\mathbf{l_k}
=\frac{\mu}{4\pi}\oint_{l_k}\int_{b_m}^{c_m}\frac{d\mathbf{l_m}\cdot d\mathbf{l_k} }{r_{km}}
=\frac{\mu}{4\pi}\int_{b_k}^{c_k}\int_{b_m}^{c_m}\frac{d\mathbf{l_m}\cdot d\mathbf{l_k} }{r_{km}}
=S_{km}L_p_{km}

where Akm=0 for path perpendicular to bm-cm as well as at infinity.

\mathbf{A}_{km}=\frac{\mu I_m}{4\pi}\int_{b_m}^{c_m}\frac{d\mathbf{l_m}}{r_{km}}


From these, we can see partial inductance Lpkm is associated with a loop inductance due to Im. This loop is made up segment bk-ck and infinity on the ends and two sides normal to bm-cm and passing both bk and ck respectively

Loop Inductance

Divide the loop C into N segments

L=\frac{\Phi}{I}=\frac{\oint_{C}\mathbf{A}\cdot d\mathbf{l}}{I}=\sum_{i=1}^N{\frac{\int_{C_{i}}\mathbf{A}\cdot d\mathbf{l}}{I}=L_{1}+L_{2}+..+L_{N}

where

L_i=\frac{1}{I}\int_{c_i}\mathbf{A}\cdot d\mathbf{l}}
=\sum_{j=1}^{N}\frac{1}{I}\int_{c_i}\mathbf{A_{ij}}\cdot d\mathbf{l_i}}
=\sum_{j=1}^{N}\frac{\mu}{4\pi}\int_{c_i}\int_{c_j}\frac{d\mathbf{l_j}\cdot d\mathbf{l_i}}{r_{ij}}
=\sum_{j=1}^{N}S_{ij}L_p_{ij}

Where Li is a net inductance of segment i. The net inductance of segment i,Li, determines the contribution of the segment current to the overall magnetic flux through the loop.

Li can be further divided into self and mutual partial inductance, Lpii and Lpij, respectively.

Example 1. 4-side thin wire loop with rectangle shape.

L_O=\sum_{i=1}^4 L_i=\sum_{i=1}^4\sum_{j=1}^4 L_{pij}

Due to rectangle shape, side 1 normal to 2,hence Lp12/Lp21=0, same thing for other sides, as such

L_O=(L_{11}-L_{31})+(L_{22}-L_{42})+(L_{33}-L_{13})+(L_{44}-L_{24})=L_{11}+L_{22}+L_{33}+L_{44}-2*L_{13}-2*L_{24}

The flux associated with L11-L31 can be seen on the top of the figure.
Example 2. A current flowing on the wire and return ground that form a current loop.
With partial inductance modeling, wire=Lsig, ground=Lret, the coupling=M
With net inductance modeling, wire=Lnet=Lsig-M, ground=Lret-M.

ex. H due to an infinity long thin wire with current I at DC

\oint_c \mathbf{H}\cdot d\mathbf{l}=\int_0^{2\pi}H_0Rd\theta=2\pi RH_0=I
=>H_0=\frac{I}{2\pi R}

ex. Inductance of a rectangular loop(ignoring fringing fields at the 4 corners)
with l and w on the sides and radius of rw.


L&=\frac{\phi}{I}=2\int_0^w \int_{l=rw}^l\frac{u_0I}{2\pi l}dldw+2\int_{w=rw}^w \int_0^l\frac{u_0I}{2\pi w}dldw \\
=&\frac{u_0l}{\pi}ln(\frac{w}{r_w})+\frac{u_0w}{\pi}ln(\frac{l}{r_w})

ex. two parallel thin wire of radii r with length h and spacing s. The self inductance of this
loop formed by two wires are: L=2*(L11-M). L11=self partial inductance. M= mutual partial inductance. Using flux linkage concept, we can calculate the self inductance L=PHI/I
with s>>r.

L&=\frac{\phi}{I}=2\int_{h=0}^h \int_{r=r}^s\frac{u_0I}{2\pi r}dsdh\\
=&\frac{u_0h}{\pi}ln(\frac{s}{r})\\
where..\frac{u_0}{2\pi}=2x10^{-7}H/m=5.08nH/inch


ex. More accurate self and mutual partial inductance of wires


L_{pii}&=\frac{\mu l}{2\pi}\{ln[\frac{l}{r}+\sqrt{(\frac{l}{r})^2+1}]+\frac{r}{l}-\sqrt{(\frac{r}{l})^2+1}\}\\
L_{pij}&=\frac{\mu l}{2\pi}\{ln[\frac{l}{d}+\sqrt{(\frac{l}{d})^2+1}]+\frac{d}{l}-\sqrt{(\frac{d}{l})^2+1}\}

For l>>r and l>>d, r=radius of wire, d=spacing between wire, l=wire length

L_{pii}&=\frac{\mu l}{2\pi}[ln\frac{2l}{r}-1]\\
L_{pij}&=\frac{\mu l}{2\pi}[ln\frac{2l}{d}-1+\frac{d}{l}]

The above Lpii is for f->infinity. For DC, the constant 1 need to be changed to 3/4
For loop inductance of two wires Lloop. Assume current distribution are uniform and of opposite
direction on two wires.

L_{lp}=2(L_{p11}-L_p{12})=\frac{2\mu l}{2\pi}[ln\frac{2l}{r}-1-ln\frac{2l}{d}+1-\frac{d}{l}]\\
=\frac{2\mu l}{2\pi}[ln\frac{d}{r}-\frac{d}{l}]
=\frac{\mu l}{\pi}ln\frac{d}{r}

That's same result as the one derived previously using flux linkage concept. However, if we using DC constant 3/4. Lloop will be

L_{lp}=\frac{\mu l}{\pi}[ln\frac{d}{r}+\frac{1}{4}]

L=Lext+Lint
The first term corresponding to Lext,external inductance of a wire, and the 2nd term equals to Lint, internal inductance within the wire. As frequency get higher, skin effect forces the current to flow on the surface, internal inductance will tend to reduce to a small value comparing to external inductance.
e.x. how to calculate internal inductance of a wire. First, calculate the H within wire

\oint H dl=i \\
H2\pi r=\frac{I}{\pi a^2}\pi r^2\\
H=\frac{Ir}{2\pi a^2}


W=\int \frac{1}{2}uH^2da=\frac{1}{2}\int_{r=0}^a\int_{\phi=0}^{2\pi} \mu H^2 rdrd\phi\\
=\frac{1}{2}\int_{r=0}^a\int_{\phi=0}^{2\pi}\mu (\frac{Ir}{2\pi a^2})^2rdrd\phi
=\frac{1}{2}\int_{r=0}^a\int_{\phi=0}^{2\pi} \mu \frac{Ir}{2\pi a^2}rdrd\phi
=\frac{1}{2}\frac{u}{8\pi}I_0^2

Thus, per unit length internal inductance of a wire equals to
\inline L=\frac{2W}{I^2}=\frac{u}{8\pi}
Lint=1.27nH/inch per unit length.

* Skin depth of a wire

R_{lf}=R_{dc}=\frac{1}{\sigma \pi r_w^2} for r_w<<\delta \\
where..\sigma=conductivity,r_w= radius of wire\\

As frequency goes higher, current tends to c

R_{hf}=R_{dc}=\frac{1}{\sigma \pi (r_w^2-(r_w-\delta)^2}, for r_w>>\delta \\
\approx \frac{1}{\sigma 2\pi r_w\delta}\\
=\frac{r_w}{2\delta}r_{dc}\\
=\frac{1}{2r_w}\sqrt{\frac{\mu_0 f}{\pi \sigma}}\\
where.. \delta=\frac{1}{\sqrt{\pi f \mu_0 \sigma}}

Ex. wire inductance due to skin effect.