From telegraph equation
P'(\epsilon)=\frac{\epsilon}{n},when ~ n->\infty , P'(\epsilon)->P(\epsilon)
P'(\epsilon)=\frac{\epsilon}{n},when ~ n->\infty , P'(\epsilon)->P(\epsilon)
\begin{align*}
- & \frac{\partial \bf{v}(z,\omega) }{\partial z}=[\bf{R}(\omega )+j\omega \bf{L}(\omega)]\bf{i}(z,\omega )=\bf{Z}(\omega) \bf{i}(z,\omega) \\
- & \frac{\partial \bf{i}(z,\omega) }{\partial z}=[\bf{G}(\omega )+j\omega \bf{C}(\omega)]\bf{v}(z,\omega )= \bf{Y}(\omega ) \bf{v} (z, \omega )\\
\end{align*}
\begin{align*}
- \frac{\partial ^2 \bf{v}(z)}{\partial z} = [Z][Y]\bf{v}(z) \\
- \frac{\partial ^2 \bf{i}(z)}{\partial z} = [Y][Z]\bf{i}(z)
\end{align*}
\begin{align*}
\bf{v}(z) & = \bf{V}^{\pm}e ^{\mp \gamma _0 z} \\
\bf{i}(z) & = \bf{I}^{\pm}e ^{\mp \gamma _1 z }\\
\end{align*}
\begin{align*}
( \gamma _0 ^2 \bf{U} & -[Z][Y]) \bf{V} ^{\pm} =0 \\
( \gamma _1 ^2 \bf{U} & -[Y][Z]) \bf{I} ^{\pm} =0 ....(4)\\
\end{align*}
\begin{align*}
| \gamma _0 ^2 \bf{U} & -[Z][Y] | =0 \\
( \gamma _1 ^2 \bf{U} & -[Y][Z]| =0 ....(5)\\
\end{align*}
\begin{align*}
[\bf{V}_1 e ^ {- \gamma _1 z}, \bf{V}_2 e ^ {- \gamma _1 z},...\bf{V}_N e ^ {- \gamma _N z} ] = \bf{M} _V diag(e ^ {- \gamma _1 z},e ^ {- \gamma _2 z},...,e ^ {- \gamma _N z})=\bf{M}_v \bf{D} ....(6)\\
\end{align*}
\begin{align*}
[\bf{I}_1 e ^ {- \gamma _1 z}, \bf{I}_2 e ^ {- \gamma _1 z},...\bf{I}_N e ^ {- \gamma _N z} ] = \bf{M} _I diag(e ^ {- \gamma _1 z},e ^ {- \gamma _2 z},...,e ^ {- \gamma _N z})=\bf{M}_I \bf{D}
\end{align*}
\begin{align*}
\bf{M}_V =[Z]\bf{M}_I diag(\gamma_1 ^ {-1},\gamma_2 ^ {-1},...\gamma_N^ {-1})=\bf{Z}\bf{M}_I \bf{S}
\end{align*}
\begin{align*}
\bf{M}_I =[Y]\bf{M}_V diag(\gamma_1 ^ {-1},\gamma_2 ^ {-1},...\gamma_N^ {-1})=\bf{Y}\bf{M}_V \bf{S}
\end{align*}
\bf{V}(z)=\bf{V}_i(z)+\bf{V}_r(z)=\bf{M_v(DV_0^++D^{-1}V_0^-)}
\begin{align*}
\bf{V_0^+}= &(V_{01}^+,V_{02}^+,....,V_{0N}^+)\\
\bf{V_0^-}= & (V_{01}^-,V_{02}^-,....,V_{0N}^-)
\end{align*}
\bf{I}(z)=\bf{I}_i(z)+\bf{I}_r(z)=\bf{M_I(DI_0^+-D^{-1}I_0^-)}
\begin{align*}
\bf{V_i}(z) & =\bf{Z}_C \bf{I}_i(z) \\
\bf{V_r}(z) & =-\bf{Z}_C \bf{I}_r(z) \\
w&here\\
\bf{Z}_C & =\bf{M}_V \bf{M}_I ^{-1}
\end{align*}
\begin{align*}
a_n &=\frac{V_n ^+}{\sqrt {Z_{0n}}}\\
b_n &=\frac{V_n ^-}{\sqrt {Z_{0n}}}\\
w&here~ a_n,b_n ~are~incident~wave~and~reflected~wave,respectively\\
V_n &=V_n^+ + V_n^- =(a_n + b_n) \times \sqrt{Z_{0n}}\\
I_n &=I_n^+ + I_n^- =(V_n^+ -V_n^-)/ Z_{0n}=(a_n-b_n)/\sqrt{Z_{0n}}\\
P_n & =\frac{1}{2}Re[V_nI_n^*]=\frac{1}{2}[a^2-b^2]\\
\bf{b} & =\bf{S}\bf{a}\\
w&here~ S_{ij}=\frac{b_i}{a_j}|a_k=0~ for~ k\ne j
\end{align*}
\begin{bmatrix} V_1 ^- \\ V_2 ^-\\.\\.\\.\\V_n ^- \end{bmatrix}=
\begin{bmatrix}S_{11}&S_{12}&... &S_{1n}\\S_{21}&S_{22}&...&S_{2n}\\.\\.\\.\\S_{n1} &S_{n2}&...&S_{nn} \end{bmatrix}
\begin{bmatrix} V_1 ^+ \\ V_2 ^+\\.\\.\\.\\V_n ^+ \end{bmatrix} \\
where \\
S_{ij}=\frac{V_i^-}{V_j^+} |_{V_k^+ =0,~ for~ k \ne j} \\
V_k ^+=0~ --~ port~k~terminated~to~characteristic~impedance\\
\begin{align*}
V_{ij} &=V_{ij}^+ + V_{ij}^- \\
I_{ij} &=I_{ij}^+ - I_{ij}^- \\
\end{align*}
\inline I^-
. See below for the illustration of V+/V- and I+/I-.
L_{trace_pair}\approx \frac{\mu_0 \mu_r h len}{W}
\begin{align*}
\pmb{e} & (\pmb{r},t)=\frac{1}{2\pi }\int \pmb{E}(\pmb{r},\omega)e^{j \omega t}d\omega,
\pmb{h} (\pmb{r},t)=\frac{1}{2\pi }\int \pmb{H}(\pmb{r},\omega)e^{j \omega t}d\omega \\
F & or ~time ~ harmonic ~ components,\\
\mathcal{E} &(r,t)=\pmb{E}(r,\omega)e^{j\omega t},
\mathcal{H}(r,t)=\pmb{H}(r,\omega)e^{j\omega t}\\
\end{align*}
\begin{align*}
\nabla & \times \pmb{E}= - j\omega \pmb{B} \\
\nabla & \times \pmb{H}= \pmb{J}+ j\omega \pmb{D}\\
\nabla & \cdot \pmb{D}= \rho\\
\nabla & \cdot \pmb{B}= 0
\end{align*}
\begin{align*}
\mathcal{A} & (t)=|A|cos(\omega t+\phi) ~ \Longleftrightarrow A(t)=Ae^{j\omega t}\\
o & r ~ \mathcal{A}(t)=Re \{A(t)\}\\
w&here ~ A=|A|e^{j\phi}~ is~ a ~complex ~phasor.
\end{align*}
\begin{align*}
\mathcal{A} &(t)=Re [A(t)] = Re [Ae^{j\omega t} ]\\
\mathcal{B} &(t)=Re [B(t)] = Re [Be^{j\omega t} ]\\
<\mathcal{A} &(t) \mathcal{B}(t)>=<\frac{1}{2}(Ae^{j\omega t}+A^*e^{-j\omega t})*\frac{1}{2}(Be^{j\omega t}+B^*e^{-j\omega t})\\
= & \frac{1}{4}<(AB^*+BA^*)+ABe^{-j2\omega t}+A^*B^*e^{-j2\omega t}> \\
= & \frac{1}{2} ( < Re[AB^*] > + < Re[AB*e^{-j2\omega t} ] > ) \\
= & \frac{1}{2} Re[AB^*]
\end{align*}
\begin{align*}
0 &=\nabla \cdot (\nabla \times \pmb{H})=\nabla \cdot (J+\frac{\partial \pmb{D}}{\partial t}) ~\Rightarrow \\
\nabla & \cdot J +\frac{\partial \rho}{\partial t}=0 \\
o &r, in~ integral~ form \\
I &=\int_V\nabla \cdot Jdv=\oint_SJda=\frac{\partial} {\partial t}\int_V \rho dv=\frac{\partial Q} {\partial t}
\end{align*}
\begin{align*}
\nabla & \cdot J= \nabla \cdot \sigma E=\frac{\sigma \rho }{\epsilon} ~ \Rightarrow \\
\nabla & \cdot J+\frac{\partial \rho}{\partial t}=\frac{\sigma \rho }{\epsilon}+\frac{\partial \rho}{\partial t}=0 ~ \Rightarrow \\
\rho &(r,t) = \rho_0 e^{-\sigma t / \epsilon } \\
d &ue ~ to ~ \sigma >> \epsilon ~ in ~ conductor, \rho -> 0 ~ in~ a ~short~ time.
\end{align*}
\inline w=\frac{1}{2}\epsilon |E|^2+\frac{1}{2}\mu |H|^2
\inline \pmb{P}=\pmb{E} \times \pmb{H}
\begin{align*}
\nabla &\cdot (\pmb{E} \times \pmb{H})=\pmb{H}\cdot (\nabla \times \pmb{E})-\pmb{E}\cdot (\nabla \times \pmb{H})= \\
-\mu & \pmb{H}\cdot \frac{\partial \pmb{H}}{\partial t} -\mu \pmb{E}\cdot \frac{\partial \pmb{E}}{\partial t}-\pmb{E}\cdot \pmb{J} ~\Rightarrow\\
\nabla &\cdot \pmb{P}= -\frac{\partial w}{\partial t}- \pmb{E}\cdot \pmb{J}\\
N&ote: \epsilon \pmb{E} \cdot \frac{\partial \pmb{E} }{\partial t}=\frac{1}{2}\epsilon \frac{\partial |E|^2}{\partial t}, \mu \pmb{H} \cdot \frac{\partial \pmb{H} }{\partial t}=\frac{1}{2}\mu \frac{\partial |H|^2}{\partial t}
\end{align*}
\begin{align*}
\pmb{r} & (u_1,u_2,u_3) =x(u_1,u_2,u_3)\hat{x}+y(u_1,u_2,u_3)\hat{y}+z(u_1,u_2,u_3)\hat{z}\\
d &\pmb{r}=\frac{\partial \pmb{r}}{\partial u_1}du_1+\frac{\partial \pmb{r}}{\partial u_2}du_2+\frac{\partial \pmb{r}}{\partial u_3}du_3\\
=& \pmb{a}_1'du_1+\pmb{a}_2'du_2+\pmb{a}_3'du_3\\
i&f ~ \pmb{a}_1' \perp \pmb{a}_2' \perp \pmb{a}_3', this ~ is ~ orthogonal ~ curvilinear ~ coordinates ~ system\\
d \pmb{r} & = h_1\pmb{a}_1du_1+h_2\pmb{a}_2du_2+h_3\pmb{a}_3du_3\\
w&here ~ \pmb{a}_1,\pmb{a}_2,\pmb{a}_3 ~ are ~ unit ~ vectors
\end{align*}
\begin{align*}
d\pmb{S}_i & = d\pmb{s}_j \times d\pmb{s}_k \\
wh&ere ~ d\pmb{s}_j=h_jdu_j\pmb{a}_j,d\pmb{s}_k=h_kdu_k\pmb{a}_k,\pmb{a}_j \times \pmb{a}_k=\pmb{a}_i\\
dV = & d\pmb{s}_i \cdot d\pmb{S}_i =(h_idu_i\pmb{a}_i)\cdot (h_jh_kdu_jdu_k\pmb{a}_i)\\
= &(h_1h_2h_3)du_1du_2du_3
\end{align*}
\begin{align*}
u_1 & =x,u_2=y,u_3=z \\
\pmb{a}_1 & =\hat{x},\pmb{a}_2=\hat{y},\pmb{a}_z=\hat{z}\\
d\pmb{r} & =d\pmb{s}=\hat{x}dx+\hat{y}dy+\hat{z}dz \\
h_1 & =h_2=h_3=1\\
d\pmb{S} & =\hat{x}dS_x+\hat{y}dS_y+\hat{z}dS_z=dydz\hat{x}+dxdz\hat{y}+dxdy\hat{z} \\
dV & =dxdydz
\end{align*}
\begin{align*}
u_1 & =\rho, u_2=\psi, u_3=z \\
\pmb{a}_1 & =\hat{u}_{\rho},\pmb{a}_2=\hat{u}_{\psi},\pmb{a}_3=\hat{u}_{z}\\
d\pmb{r} & =\hat{u}_{\rho}d\rho+\hat{u}_{\psi}\rho d\psi+\hat{u}_{\z}dz\\
h_1 &=1, h_2=\rho, h_3=1 \\
d\pmb{S} & =\rho d\psi dz\hat{u}_{\rho} +d\rho dz \hat{u}_{\psi}+\rho d\rho d\psi \hat{u}_{z}\\
dV & =\rho d\rho d\psi dz
\end{align*}
\begin{align*}
u_1 & =\rho, u_2=\psi, u_3=\theta \\
\pmb{a}_1 & =\hat{u}_{\rho},\pmb{a}_2=\hat{u}_{\psi},\pmb{a}_3=\hat{u}_{\theta}\\
d\pmb{r} & =\hat{u}_{\rho}d\rho+\hat{u}_{\psi}\rho sin\theta d\psi+\hat{u}_{\theta}\rho d\theta \\
h_1 & =1, h_2=\rho, h_3=\rho sin \theta \\
d\pmb{S} &=dS_r\hat{u}_r+dS_{psi}\hat{u}_\psi+dS_{\theta}\hat{u}_{\theta} \\
d\pmb{S} &=\rho^2sin\theta d\psi d \theta\hat{u}_r+\rho sin\theta d\rho d\theta \hat{u}_\psi+\rho d\rho d\psi \hat{u}_{\theta}\\
dV &=\rho^2sin\theta d\rho d\psi d\theta
\end{align*}
\begin{align*}
d\phi & (u_1,u_2,u_3)=\nabla \phi (u_1,u_2,u_3) \cdot d\pmb{s} \\
d\phi & =\frac{\partial \phi}{\partial u_1}du_1+\frac{\partial \phi}{\partial u_2}du_2+\frac{\partial \phi}{\partial u_3}du_3\\
d\pmb{s} & =h_1du_1\pmb{a}_1+h_2du_2\pmb{a}_2+h_3du_3\pmb{a}_3 ~~\Rightarrow \\
\nabla & \phi (u_1,u_2,u_3)=\frac{\partial \phi}{h_1\partial u_1}\pmb{a}_1+\frac{\partial \phi}{h_2\partial u_2}\pmb{a}_2+\frac{\partial \phi}{h_3\partial u_3}\pmb{a}_3
\end{align*}
\begin{align*}
\nabla \cdot \pmb{A}=\frac{1}{h_1h_2h_3}[\frac{\partial(A_1h_2h_3)}{\partial u_1}+\frac{\partial(A_2h_1h_3)}{\partial u_2}+\frac{\partial(A_3h_1h_2)}{\partial u_3}]
\end{align*}
\begin{align*}
\nabla \times \pmb{A}=\frac{1}{h_1h_2h_3}
\begin{vmatrix}
h_1\pmb{a}_1 & h_2\pmb{a}_2 & h_3\pmb{a}_3 \\
\frac{\partial}{\partial u_1} & \frac{\partial }{\partial u_2} & \frac{\partial}{\partial u_3} \\
h_1A_1 & h_2A_2 & h_3A_3
\end{vmatrix}
\end{align*}
\begin{align*}
\nabla ^2 \phi & =\nabla \cdot (\nabla \phi)
=\frac{1}{h_1h_2h_3}[\frac{\partial(A_1h_2h_3)}{\partial u_1}+\frac{\partial(A_2h_1h_3)}{\partial u_2}+\frac{\partial(A_3h_1h_2)}{\partial u_3}] \\
wh & ere ~ A_1=\frac{\partial \phi}{h_1\partial u_1},A_2=\frac{\partial \phi}{h_2\partial u_2},A_3=\frac{\partial \phi}{h_3\partial u_3} \Rightarrow \\
\nabla ^2 \phi & =\frac{1}{h_1h_2h_3}[\frac{\partial}{\partial u_1}(\frac{h_2h_3}{h_1}\frac{\partial \phi}{\partial u_1})+\frac{\partial}{\partial u_2}(\frac{h_1h_3}{h_2}\frac{\partial \phi}{\partial u_2})+\frac{\partial}{\partial u_3}(\frac{h_1h_2}{h_2}\frac{\partial \phi}{\partial u_3})
\end{align*}